11 research outputs found

    Signaling Pathways Regulating Thermogenesis

    Get PDF
    Obesity, an excess accumulation of white adipose tissue (WAT), has become a global epidemic and is associated with complex diseases, such as type 2 diabetes and cardiovascular diseases. Presently, there are no safe and effective therapeutic agents to treat obesity. In contrast to white adipocytes that store energy as triglycerides in unilocular lipid droplet, brown and brown-like or beige adipocytes utilize fatty acids (FAs) and glucose at a high rate mainly by uncoupling protein 1 (UCP1) action to uncouple mitochondrial proton gradient from ATP synthesis, dissipating energy as heat. Recent studies on the presence of brown or brown-like adipocytes in adult humans have revealed their potential as therapeutic targets in combating obesity. Classically, the main signaling pathway known to activate thermogenesis in adipocytes is β3-adrenergic signaling, which is activated by norepinephrine in response to cold, leading to activation of the thermogenic program and browning. In addition to the β3-adrenergic signaling, numerous other hormones and secreted factors have been reported to affect thermogenesis. In this review, we discuss several major pathways, β3-adrenergic, insulin/IGF1, thyroid hormone and TGFβ family, which regulate thermogenesis and browning of WAT

    Phosphoregulation of HORMA domain protein HIM-3 promotes asymmetric synaptonemal complex disassembly in meiotic prophase in Caenorhabditis elegans

    Get PDF
    正常な精子・卵子の形成メカニズムを解明 --染色体の分離に重要なタンパク質の発見--. 京都大学プレスリリース. 2020-12-04.In the two cell divisions of meiosis, diploid genomes are reduced into complementary haploid sets through the discrete, two-step removal of chromosome cohesion, a task carried out in most eukaryotes by protecting cohesion at the centromere until the second division. In eukaryotes without defined centromeres, however, alternative strategies have been innovated. The best-understood of these is found in the nematode Caenorhabditis elegans: after the single off-center crossover divides the chromosome into two segments, or arms, several chromosome-associated proteins or post-translational modifications become specifically partitioned to either the shorter or longer arm, where they promote the correct timing of cohesion loss through as-yet unknown mechanisms. Here, we investigate the meiotic axis HORMA-domain protein HIM-3 and show that it becomes phosphorylated at its C-terminus, within the conserved “closure motif” region bound by the related HORMA-domain proteins HTP-1 and HTP-2. Binding of HTP-2 is abrogated by phosphorylation of the closure motif in in vitro assays, strongly suggesting that in vivo phosphorylation of HIM-3 likely modulates the hierarchical structure of the chromosome axis. Phosphorylation of HIM-3 only occurs on synapsed chromosomes, and similarly to other previously-described phosphorylated proteins of the synaptonemal complex, becomes restricted to the short arm after designation of crossover sites. Regulation of HIM-3 phosphorylation status is required for timely disassembly of synaptonemal complex central elements from the long arm, and is also required for proper timing of HTP-1 and HTP-2 dissociation from the short arm. Phosphorylation of HIM-3 thus plays a role in establishing the identity of short and long arms, thereby contributing to the robustness of the two-step chromosome segregation

    Analgesic Mechanisms of Steroid Ointment against Oral Ulcerative Mucositis in a Rat Model

    No full text
    Despite the long history of use of steroid ointments for oral mucositis, the analgesic mechanism has not been fully elucidated. In this study, we examined the effects of triamcinolone acetonide (Tmc) on oral ulcerative mucositis-induced pain in conscious rats by our proprietary assay system. Based on evaluations of the physical properties and retention periods in the oral mucosa of human volunteers and rats, we selected TRAFUL® ointment as a long-lasting base. In oral ulcerative mucositis model rats, TRAFUL® with Tmc suppressed cyclooxygenase-dependent inflammatory responses with upregulations of glucocorticoid receptor-induced anti-inflammatory genes and inhibited spontaneous nociceptive behavior. When an ointment with a shorter residual period was used, the effects of Tmc were not elicited or were induced to a lesser extent. Importantly, TRAFUL® with Tmc also improved oral ulcerative mucositis-induced mechanical allodynia, which has been reported to be independent of cyclooxygenase. Ca2+ imaging in dissociated trigeminal ganglion neurons showed that long-term preincubation with Tmc inhibited the hypertonic stimulation-induced Ca2+ response. These results suggest that the representative steroid Tmc suppresses oral ulcerative mucositis-induced pain by general anti-inflammatory actions and inhibits mechanical sensitivity in peripheral nerves. For drug delivery, long-lasting ointments such as TRAFUL® are needed to sufficiently induce the therapeutic effects

    Novel transcripts of Nox1 are regulated by alternative promoters and expressed under phenotypic modulation of vascular smooth muscle cells

    No full text
    NADPH oxidase is implicated in the pathogenesis of various cardiovascular disorders. In vascular smooth muscle cells (VSMC), expression of NOX1 (NADPH oxidase 1), a catalytic subunit of NADPH oxidase, is low and is induced upon stimulation by vasoactive factors, while it is abundantly expressed in colon epithelial cells. To clarify the regulatory mechanisms underlying such cell-specific expression, the upstream regions directing transcription of the NOX1 gene were explored. In P53LMACO1 cells, a cell line originated from mouse VSMCs, two novel Nox1 mRNA species, the c- and f-type, were isolated. These transcripts contained 5′-untranslated regions that differed from the colon type mRNA (a-type) and encoded an additional N-terminal peptide of 28 amino acids. When these transcripts were fused to the c-myc tag and expressed in human embryonic kidney 293 cells, a fraction of translated proteins demonstrated the size containing the additional peptide. Proteins encoded by the c- and f-type mRNAs exhibited superoxide-producing activities equivalent to the activity of the a-type form. The a-type mRNA was expressed in the colon and in the intact aorta, whereas the c-type mRNA was detected in the primary cultured VSMCs migrated from aortic explants, in vascular tissue of a wire-injury model and in the thoracic aorta of mice infused with angiotensin II. The promoter region of the c-type mRNA exhibited transcriptional activity in P53LMACO1 cells, but not in MCE301 cells, a mouse colon epithelial cell line. These results suggest that expression of the Nox1 gene is regulated by alternative promoters and that the novel c-type transcript is induced under phenotypic modulation of VSMCs

    Phosphorylation of the synaptonemal complex protein SYP-1 promotes meiotic chromosome segregation

    Get PDF
    正常な卵子を生み出す細胞分裂に必須の分子メカニズムを解明. 京都大学プレスリリース. 2017-12-28.Chromosomes that have undergone crossing over in meiotic prophase must maintain sister chromatid cohesion somewhere along their length between the first and second meiotic divisions. Although many eukaryotes use the centromere as a site to maintain cohesion, the holocentric organism Caenorhabditis elegans instead creates two chromosome domains of unequal length termed the short arm and long arm, which become the first and second site of cohesion loss at meiosis I and II. The mechanisms that confer distinct functions to the short and long arm domains remain poorly understood. Here, we show that phosphorylation of the synaptonemal complex protein SYP-1 is required to create these domains. Once crossover sites are designated, phosphorylated SYP-1 and PLK-2 become cooperatively confined to short arms and guide phosphorylated histone H3 and the chromosomal passenger complex to the site of meiosis I cohesion loss. Our results show that PLK-2 and phosphorylated SYP-1 ensure creation of the short arm subdomain, promoting disjunction of chromosomes in meiosis I
    corecore